
SETS OF UNIQUENESS AND SETS OF MULTIPLICITY(1) 

BY 

O. C A R R U T H  McG EHEE 

ABSTRACT 

This paper establishes a condition of metric thinness for a translation set E 
which suffices to imply that E is a set of uniqueness (in the broad sense). An 
existence proof is given to show that this result is close to being sharp. These 
theorems extend results of RaphaS1 Salem. 

1. Introtluetion. Let the circle group T be identified with the real numbers 

modulo 1, by the correspondence t--. e(t)= e 2~t. The distribution on T whose 

Fourier series is ~n~176 o~cne(nx) is called a pseudofunction if lim l~l~o~c # = 0. Let 
PF denote the class of  such distributions. A closed set E c Tis called a set of 

multiplicity, or an .It-set, if it supports a nonzero pseudofunction; if it does 

not, it is a set of  uniqueness, or a q/-set. I f  M(E), the class of  measures supported 

by E, contains a nonzero pseudofunction, then E is a set of  multiplicity in the 
strict sense, or an J[o-set; otherwise, a set of uniqueness in the broad sense, or 

a qZo-Set. (For a proof  that not every .//C-set is an .~'o-set, see [6], sections 1 and 3.) 

Every set of  positive measure is an .///-set. But both q/-sets and d/-sets occur 

among sets of  zero measure, and the study of their properties has been a subject 
of  some interest. Accounts of  the work that has been done may be found in chapter 

IX of Zygmund's  work [9] and Chapters V and VI of the book by Kahane and 

Salem [5]. 
It  is natural to consider criteria of  metric thinness which distinguish among 

sets of  Lebesgue measure zero, namely their Hausdorff  measure with respect to 

convex functions (see the end of this section for a definition). One might hope 

to find that whenever a set has zero Hausdorff measure with respect to a certain 
function h, it must be a q/-set. But by itself such a hypothesis does not suffice; 

Iva~ev-Musatov [3,4] has shown that for an arbitrary convex function h, there 

is an ..Or'o-Set of  zero h-measure; and he provides an explicit method of con- 
struction, which we shall describe briefly later. 

We shall show that if a translation set has zero h-measure, where 

h(t) = (log t -1) -1 ,  then it is a q/o-set. This result is a corollary of  Theorem A. 
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To state this theorem and discuss our results suitably, we need some technical 
conventions for describing translation sets (cf. [5], Chapter I). 

Let u = (u~, . . . ,uu)with H > 2 and 

O<u~ <u2 < . . . < u n < l ;  

and let 4, called a ratio of dissection, satisfy 

0 < ~ < rain{1 - Un, u u -  u n - l , ' " , u 2 -  ul}. 

A dissection of type (H, u, ~) on an interval Eo = [a, b] is the selection of a set 
E1 = Eo consisting of the union of the H pairwise disjoint closed intervals with 
left-hand endpoints a + ( b -  a)uj and length ( b -  a)~. We shall say that we 
keep the intervals that make up El.  

When a dissection of type (H(1),ul,~l) is made on the interval [0,1], d(1) 
=H(1)  intervals of length dl = ~  are kept; when a dissection of type 
(H(2), u2, ~2) is made on each of these intervals, d(2) = H(1) H(2) intervals of 
length d2 = ~l~Z are kept. Repeating the procedure, after the kth dissection 
d(k) = H(1)... H(k) intervals are kept, each of length dk = ~1"'" ~k, and we call 
their union Ek. We define the set E = E{(H(k),uk,~k)} to be the intersection 
["]~~ k. Its measure is ]--[~=~H(k)~k. Write uk as (Uk,1,'",Uk,mk)). Then the 
points of E are precisely the sums of all the infinite series 

(1-1) Ul,j(1) + dau2,j(2) + ... + d k_ xUk,s(k) + ... 

where j (k)= 1,2, ..., or H(k) for each k. 
A portion of a set is its non-empty intersection with an open interval. A perfect 

set which is decomposable, for an infinite number of integers H, into a union 
of H pairwise disjoint portions which are translates one of another, is called a 
translation set. A closed perfect set is a translation set if and only if it may be 
described by a construction of the sort just explained. 

Actually, a translation set always may be described with 

(1-2) uk. 1 = 0 for all k. 

We did not adopt (1-2) as a convention because in Section 3 it is advantageous 
to treat all the u~,j as variables. I f  (1-2) holds, and H ( k ) - 2 ,  and we let 
r~ = uk,2dk-1, then the sums (1-1) are precisely the sums 

ekrk: e k = 0  or 1 for k = 1,2,. .- .  
k=l 

Such a set, or any translate thereof, is called a symmetric set and its description 
may be further conventionalized so that uk = ( 0 , 1 -  ~k). We denote this set by 
E{~h}. Among the symmetric sets with constant ratio of dissection, which we 
denote by g(O, is the familiar Cantor set E(1/3). 
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THEOREM A. I f  b > 4 and d, = i t " "  ~,, and 

(1-3) l iminf d, exp[(log br) ~, (H(k) - 1)] = 0, 

then the translation set E = E{(H(k), Uk,~k)} iS a q/o-set. 

This theorem will be proved, and its corollaries derived, in Section 2. It shows 
that there is a large class of translation sets in which the q/o property is stable 
under small changes in the parameters of construction. 

Theorem A is close to being a sharp result, for if fl < �89 there exists a trans- 
lation set which is an d/o-set and for which 

(1-4) ~ d;  lexp[ - fl(log r) ~ (H(k) - 1)] < oo. 
r = l  k = l  

This result was first obtained by Salem ([5], p. 100). It also follows from the 
somewhat technical result, Theorem C, which we shall state and prove in Section 3. 
The procedure is an extension of Salem's method, and yields, in particular, the 
following new result: There exists a translation set which is an .//o-set and has 
zero fb-measure for all the functions 

fb( t )=exp[--(Iogt-1)b] ,  0 <  b < 1. 

DEFINITION OF HAUSDORFF MEASURE (cf. [5], ch. II). Let h(t) be a function 
defined for t e [0,1) with h(0) = 0, h'(t) > 0, h"(t) < 0; for example, h,(t) = t* 
for 0 < a < 1. For a set E and e > 0, let C(~,E) be the infimum of the sums 
XT= th(I Ej ), where E is covered by a union of open intervals E j, j -- 1, 2, ..., with 

length [Ej] < e for every j ;  then C(e, E) is nondecreasing as ~ ~ 0. The Hausdor.ff 
measure of  E with respect to h, or the h-measure of E, is 

#n(E) = limC(8,E), 
~ 0  

which may be infinite. Note that if E has zero g-measure, and if h(t) = o(g(t)) as 
t ~ 0 (we say that g is steeper than h), then E also has zero h-measure. 

2. Conditions which imply that a set is a q/o-Set. 

Proof of Theorem A. To show that M ( E ) n  PF = {0}, it suffices to show that 

(2-1) lira sup I I > 0 
Inl-.oo 

for an arbitrary positive measure # carried by E; for i fa  measure is a pseudofunetion, 
so is its total variation. The latter fact follows from the existence of the Radon- 
Nikodym derivative of with respect to # ([2], III.10.7); and the fact that if  
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liml,l- |  J'~o e(nx)#(dx) = 0 and i f f  is #-integrable, then liml,l_.o o [~oe(nx)f(x)l~(dx) 
= 0 ([-7], p. 38, lemma, or [9], XII. 10.9). 

We shall use the elementary result of  Diophantine approximation theory 
([11, p. 13) that, given K real numbers tl, ".., tK and e > 0, there is an integer m 
such that 

1 < [m[ < e -K, and II mtjll for j =  1,- . . ,K 

(where [1 x [1 denotes the distance from the real number x to the nearest integer). 
We shall also use the inequalities 

[e(x) - e(y)[ = 2 sin(n I[ x - y[[) < 2re 11 x - y [I; 

I lnx[ l<[  n[ [Ixll (x, yreal) .  

Let # e  M(E) be a positive measure of total mass II IIM = 1. The translation 
set E is, foreach r = 1,2,..., covered by J(r) intervals I i of length ] l i [<  dr; let 
s i ~ I i. We have 

d ( r )  

r, #(I,) e ( -  nsi)[ 
i=1 

i = l  I~ 

For an integer n such that Ilns, ll 1/4, i =  1, ..., J(r), 

i i~=)1 nst) J(r) I~(I~)e( - > ~ ~(Ii) cos 2gnsi 
/ = !  

> minla,__<j(,)(cos2nl] ns,[[); 

because #(I i)> 0, ~E~_-(~#(Ii)= 1, and cos 2nnsi > O. Therefore, for such n, 

[fl(n)[ >- min (cos 2=llns, H)- 2=lnld, 
1 ~ i~J ( r )  

Thus to prove (2-1) it suffices to show that there exists a sequence of integers 
{n,} such that 

l im[n,]  = oo; l i m l n r l d , = 0 ;  and 
T--~ O0 F-~O0 

(2-2) 

For then 

1 
11 nrs, I I < b -1 < ~- (i = 1, .. ., J(r)). 

(2-3) lim sup ]/1(n) ] > cos 21rb -1 > O. 
[nl~oo 
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First we shall carry out the proof assuming that 

(2--4) lim drexp[(logbr ) ~ (H(k) - 1)] = 0. 
r ~ o o  k = l  

Since E is a translation set, the s~'s (cf. (1-1)) may be taken to be the 
d(r) = H(1)... n(r) numbers 

{sJ(o ..... J(o = ~ ut,~(k)di-l:J(k)= 1,. . . ,H(k) for k =  1,... ,r} 
k = l  

--re-indexed as indicated. Therefore, in order to solve the J(r) inequalities of 
(2-2) for n r, it suffices to find nr obeying the following ~ [ = l ( H ( k ) - 1 )  

inequalities: 

II nr(ukj(k'dg-')II < 1/br (j(k) = 2, . . . ,H(k); k = 1, . . . ,r) 

- - s ince  it may be assumed without loss of generality that Uk,1 = 0 for every k 
((1-2)). By (2-4) it is possible to select a sequence of integers {mr} such that 

lim mr = oo, but lim drmrexp[(logbr) ~ (H(k) - 1)] = 0. 
r--~ oo r--~ GO k = l  

For each r, there exists an m satisfying the K = Y~[t=I(H(k)- 1) inequalities 

II m(mruk,j(k, dk- 1) II < 1/br (j(k) = 2 , . ,  n (k ) ;  k = 1, ..., r); 

and such that 

1 < [ m ] < (1 ]br)-X = exp[(log br) ~ (H(k) - 1)]. 
k = l  

With n r = m m , ,  the sequence {n,} satisfies the three conditions (2-2) and the 

theorem follows. 
If  we use (1-3) instead of (2-4), we proceed similarly. There is then a sequence 

{r(p): p = 1,2,... } of values of r for which there exist integers n,(p), such that 
(2-2) is satisfied if we write r(p) for r and take the limits as p ~ oo. Then (2-3) 
still follows. The proof of the theorem is complete. 

Applying the theorem to symmetric sets, for which H ( k ) -  2, we obtain 

COXOLLAXY A-1. I f  b > 4 and 

lim inf drexp(rlog br) = 0 
r-4, oo 

then the symmetric set E{~k} is a qlo-set. 

Conditions such as (1-3)have no simple relationship to Hausdorff measures. 
However, from Theorem A we can obtain 
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COROLLARY A-2. 

then E is a ado-set. 

Proof. 

Therefore 

therefore 

therefore 

therefore 

O. C. MeGEHEE 

I f  a translation set E has h-measure zero where 

h(0 = (log t- 1)- 1, 

Let E = E{(H(k), uk, ~k)}. The hypothesis implies that 

lira inf J(r)h(d,) = O. 
P-~00 

lira inf[log J(r) + logh(d,)] 
P"~ QO 

= - -  t:X) , 

[ ' ] lira inf log log(br) + log ~ H(k) - log log d,-~ = - ao ; 
r ~ o o  k ~ l  

l iminf  logbr) ~ H ( k ) - l o g d T t  = - o o ;  

[June 

lim,..~oinf d, exp[(logbr) k=l ~ H(k)] =0, 

and by the theorem, E is a ado-set. 

Now we shall present a result which in one sense is more general thanTheorem A. 
But the hypothesis, like that of A, is of interest as a criterion of metric thinness 
only for sets with a certain regularity of construction. The theorem differs only 
slightly from some results due to Salem ([83, theorems VII, IX, and X; or [5] 
oh. VII, theorems XIV and XVI). 

TH~ORI~M B. Let E bea closed perfect subset of the circle, {d,} a null sequence 
of positive numbers, {J(r)) a sequence of integers; such that for each r = 1,2,..., 
the set E is covered by J(r) intervals, each of length no greater than d,. I f  for 
s o m e  a > O, 

(2-5) lira inf d,e~1(r)= O, 
r . ~ o 0  

then E is a ado-Set. 



1966] SETS OF UNIQUENESS AND SETS OF MULTIPLICITY 89 

Proof. If  the theorem holds in the case a = c, then it holds in the case a = c/2, 
by the following argument. Let /~ ~ M ( E ) n  P F  and suppose (2-5) holds for E 
with a = c/2. Since E is a closed perfect subset of the circle, it is the union of 
two closed perfect sets El ,  E2 contained respectively in two disjoint intervals, 
eachof  length less than 2/3. Then (2-5) holds, with a = c, for at least one of the 
two sets, say for E 1, so that E1 is a q/o-set. Since # is a pseudofunction, the 
restriction of # to E1 is a pseudofunction (cf. [7], p. 38, lemma) and hence must 
be the zero measure; so E2 must support #, and (2-5) holds for E2 with a = c/2. 
Repeating the argument, we show that the support of # is contained in an interval 
of length limk_,| 0 and hence has a single point for its support. Since # 
is a pseudofunction, # = 0. Thus the theorem holds in the case a = c/2. 

Therefore to prove the theorem it suffices to prove it for the case of an arbitrary 
a = b > log4, say. The proof proceeds as for Theorem A, except that the s{s 
cannot be chosen in so convenient a manner; for each r, the integer nr must solve 
J(r) instead of only ~ ,  = l ( H ( k )  - 1) inequalities. But the hypothesis (2-5) allows 
us to find a sequence of integers satisfying the conditions (2-2), proving the 
theorem. 

REMARK. As we mentioned earlier, Iva6ev-Musatov has shown that for every h 
there is an d/o-Set with zero h-measure. If h is sufficiently steep, of course, such a 
set cannot obey requirements such as (2-5) or (1-3). 

What (2-5) and (1-3) say, about a set E, is that for a null sequence of numbers 
d > 0, it is possible to cover E with intervals of length d with a certain efficiency - -  
that is, without using too many such intervals. The sets of Iva6ev-Musatov are 
constructed in such a way that such efficient coverings are not possible. It is 
impractical to relate his procedure here, but let us give a brief indication: 

oo E i Ii(k) i .  , E = [")k=~ k, Ek = L)j=~ ~ where the Ikj are of widely differing lengths. In 
determining Ek+ 1, a different dissection is performed on each of the intervals 
Ikt, "",Ikj(k), and these dissections are progressively "more severe" as j counts 
from 1 to J(k); the intervals of Ek+ ~ placed in Ik2 will be much smaller and more 
numerous than those placed in Ikl; etc. Thus E is far less regular in structure 
than, say, a translation s e t -  necessarily so, according to our results. 

3. An existence proof for thin translation sets of multiplicity. 

We shall define a measure v on a class ~ of translation sets. For each E ~ 6 ~ 
we shall specify, in a natural way, a certain # e M ( E ) .  If  c, =/~(n), we shall show 
that 

(3-1) on-,0 as Inl-" 

a.e. in (d', v), which implies that almost all sets E in the measure space (g', v) are 
d/o-Sets. 
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If {q(n)} is an increasing sequence of integers, the series ]~,%olC c,[ 2'C"~ 
converges for lcl <(lira sup.  [Cnl) -1. If for some sequence {q(n)}, 

(3-2) ~ I c c, ]2qt,) < m a.e. in (e,  v) for all c > 0, 
11 

then we know that lim SUpn_.~[C, I <C -1 for all c > 0 ,  for almost all E e g .  
Assuming that the same can be done for negative values of n, (3-1)follows. To 
prove (3-2), it suffices to show that 

~, ( [cc,  1 2 q t " ) < ~ i f c > O .  (3-3) 
n . / (g ,v )  

Weshall prove (3-3) for a certain sequence {q(n)}, and thus obtain (3-1). 
Let {H(k), ~k: k = 1, 2,... } be fixed. We define g to be the class of translation 

sets E = E{(H(k),uk, ~k)} for which 

3j - 21 1 
(3--4) uk,/ 3-H-(k) <= 3H(k) ' j = 1,..., H(k); k = 1, 2, . . . .  

Recall that E = ["]k~ aEk, where Ek is the union of J(k) intervals, each of  length 
dk. Let Lk(x) be the function on [0,1] which is equal to zero at 0, increases linearly 
by the amount J(k)-1 on each of  the J(k) intervals of  Ek, and stays constant 
within each of the intervals contiguous to E~ in [0,1];  so that Lk(1 ) = 1. As 
k--, oo, {Lk(x)} converges uniformly to a continuous nondecreasing function 
L(x) which is constant on each interval contiguous to E in [0,1]. The measure 
I t=dL thus has total mass l, is carried by E, and is called the Lebesgue measure 
on E. Another way of  defining p is as an infinite convolution Pl*P2* "'" of measures 
with finite support. Let #1 assign mass H(1) -1 to each of  the points u1,i, 
j = 1,..-,H(1). Let #z assign mass H ( 2 ) - 1  to each of  the points (dlu2,1), 
j = 1,... ,H(2). In general, let /~k assign mass H(k) -1 to each of the points 
(dk_lUk,j), j = 1, "..,H(k). The nth Fourier-Stieltjes coefficient of  p~ is, letting 

d o = 1, 
H(k) 

pk(n) = H(k)-  1 Z e( - n dk- x uk.j). 
j = l  

The Fourier-Stieltjes coefficients of/~, which is the limit of 

are given by 

(3-5) 

where 

(3-6) 

~l*#2*'"*~k = dLk, 

o~ 

c. = ~(n) = l-[~ Qk( -- ndk-l) ,  
k = l  

~(k) 
Qk(w)= H(k) -1 ~, e(u~,/w). 

/=1 
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Thus for each k, Qk(w) is a function of the variables u~.j, j = 1, ..., H(k) ,  which 
we parametrize in turn as follows: 

(3-7) Uk.j = Uk,l(tk,j) _ 3j -- 2 tk,j 
3 H ( k ~  + 3H(k)a----~ " 

We allow all  real  values for each tk,i. Of course, only when 

(3-8) I tka] ~ ak, j = 1,. . ' ,H(k), 

does uk = Uk (tk) obey (3-4); only then will (3-6) and (3-5) have relevance to sets 
in ~'. Let us now indicate why we consider all real tk,j and how we select the positive 
constants a k. 

We consider Qk(w) as a function defined on the product space 

R It(k) = { t  k = ( tk ,1 ,  "" , t k , t l ( k ) ) :  tk, j ~ R for j = 1, ...,H(k)}, 

where R is the real line. Let m k be the product measure obtained on R U(k)by placing 
the measure (21r)-1/2 exp( - t 2/2)dt, the normal distribution, on eachcoordinate R. 

We now consider c., as given by (3-5), to be a function c.(z) defined on the 
product of all these measure spaces: 

(Y', v) = I ]  (RHea), ink); 
k = l  

J "  = {z = ( tx , t  2, "")  = (ta, 1, "", tl,n(1); t2,1, "", t2,H(2);'")}. 

Let 3" ~ be the set of z e 3" such that (3-8) holds for all k. It has measure 

f i  [ f_:~exp( ]mk) v(J ' l)  = (21r)- ~/2 - t 2/2)dt 
k = l  

(3-9) => 
k = l  

k = l  

[1 - exp( - a 2/2)] ntk) 

[1 - H ( k )  exp( - ak 2/2)]. 

If  T e.Y-1, then c. = c.(z) is the nth coefficient of the Lebesgue measure on the set 
E = E(~) = E { ( H ( k ) ,  Uk(tk), ~k)} ; and 

So we may regard the restriction of v to Y-1 as a measure on the class g. It will 
be a non-trivial measure only if v(Y'~) > O, for which, by (3-9), it suffices to have 

_ 2/2)]  > 0. I I  [ 1 - H ( k )  exp( al, 
k = l  
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To insure this relation we adopt the convention that 

(3-10) a k = 10 (max{k,H(k)}) 1/2. 

We shall show that for a certain increasing sequence of integers {q(n)), 

(3-11) ~|f(a'.v)lCCn(Z)12q(n)<~176 

Hencein particular, (3-3) holds, so that the Lebesgue measure is a pseudofunction 
a.e. in (r v). 

For each n we shall select an integer p(n) and use the fact that 

L f( 4 I �9 "" c ]--[ Q k ( -  ndk_ 1) (3-12) ~- ml) .m~)  Rn(P(n)).m,(.)) k = 1 

p(n) f =c2~(n,[i IQ.(_ ndk_1) l 2~(n~ 
k = 1 (R H(h),m•) 

which is true because [ Qk[ is bounded by 1 for every k, and because each Qk is a 
function of tk only. 

In order to estimate the factors on the right-hand side of (3-12), we study the 
trigonometric polynomials Q~. For convenience we temporarily drop the indices 
k, n and consider a polynomial 

H 

Q(w)= H -1Y., e(ujw) 
1 = 1  

and even powers of its modulus 

] Q(w ) ]2q = Q(w)~Q(w)q 

(q !)2 ( R 
e Z  = H-2q ~' rz! '"rlt!  Sl!'"SH! _1---1 

where the summation is taken over all pairs 

uj(r i - sj)w) 

(fix, '",  r.), (sx, . . . ,s.)) 

of H-tuples of nonnegative integers adding up to q: ~,7=xrj=q = ~,7=:sj. 
This summation may be split into two parts ~:1, ~E2, the first sum being taken 
over the diagonal of the index set, i.e. the pairs of H-tuples with rj=sj for 
j = 1,...,H. Thus 
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I = + P=cw); 

(q!)2 
(3-13) P1--'H-2q ~]1 (r ,! . . . r , t )2 ; 

P2(W) =H-2q ~2 (qI)2 ( ~  uj(r j -s j )w).  
rlI...rnI sll.. .snI e j=~ 

Let G be an integer >__2 and let q = G H .  If r , + . . . + r H = q = G H ,  then 
(r ,I . . .  r,!)>= (G!)". Using Stirling's formula for the factorial, 

l~ ! nn+(1/2)e_nen~ e = <=Cn<=e (n = 1,2, '") ,  

we obtain the estimate 

P, </../-aH_(GH)! < G ( 1 / 2 ) ( I - I t ' H 1 / 2 e  r tI 
= ( 6 ! ) .  = 

where Co = e/x/2 > 1. Consequently," 

( 1 ( H - l ) ( l ~  (3-14) PI <= Kexp - ~- 

where K is a constant independent of the choice of G and H. The quantity P2(w) 
is defined on (RU, m) via the parametrization 

uj = 3j - 2 tj 
3 ~  + 3H---a' j = 1,...,H. 

For any constant x, 

(270 -1/2 J ~  et~'exp(- t 2/2)dt = e x p ( -  x 2/2); 

in particular, assuming rj # s j, 

[(2,~)-l'2f_~e(,/r~-sj)w/3na)exp(-'~/2)dtjl 
(3-15) - - e x p  - y  - 

< exp( - w 2/H2a2). 

Since for every summand of ~2 in (3-13), rj - s~ r 0 for at least one j, the ex- 
pectation of P2(w) over (R N, m) is dominated by the maximum of the quantities 
estimated in (3-15), i.e., 

f( Pz(w) =< exp( - w 2/H2a2). (3-16) a~,,,) 
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From (3-14) and (3-16): 

Let us now restore the indices k and n, and put w = - ndk_ 1. We make G a 
function of k and assume for convenience that G(k) and I-I(k) are nondecreasing as 
k--. oo. By the foregoing estimates and (3-12), letting q(n)= G(p(n))H(p(n)) 

f(y.,v)[CC,,[ 2q(n) 

p(n) f(  3-17) < c2~t") ['I [ Qk( -- ndk-i)[ 2~t"t~))mk) 
k = I RH(k),mk 

--< cEq(") 1-I Kexp - H(k) - 1)logG(p(n)) 
k = l  

+ exp[ - n2d~_~/H(k)2a~]l. 

If n is large enough, to wit if for p = p(n), 

(3-18) n >= H(p)3/2(log G(p))~12 apdp-_~, 

then the last exponential in (3-17) is dominated by the first for each k _-< p(n), and 

(3-19) [cG [ 2~(n) < e2'tn)(K + 1)P(')e• - -~ (log G(p(n))) ~, (It(k) - 1) . 
.~,v) k = 1 

Let u denote the right-hand side of (3-18). Let p(n) be the largest integer p 
satisfying (3-18), i.e. 

p(n) = max{p: n > Y(p)}, n - 1, 2, . . . ;  

p(n) will have the same value r for fewer than Y(r + 1) consecutive values of n. 
By (3-19), (3-11) holds provided 

Y(r + 1)c~(')m')+'exp - (log G(r)) ~ (H(k) - 1) < oo for all e > 0. 
r=l k=l 

Writing the expression for Yinto this condition, we obtain 

THEOPa~M C. l f  a positive integer-valued function G(k) can be defined such that 

~, d,-lexp logH(r  + 1) + -~loglogG(r + 1 ) + l o g a r +  1 
r = l  

(3-20) + c(G(r)H(r) + r) - -~-(logG(r)) ~ (H(k) - 1) 
k = l  

< o o  for all c > 0 ,  

then E= E(z)= E{(H(k),u,(tk),~k) } is an clio-set a.e. in (d~,v). 
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Clearly, (3-20) can be true, and the theorem useful, when the choice of the 
functions H and G is such that (logG(r)) ~ [ = ~ ( H ( k ) -  1) strongly dominates 
the other summands in the exponential bracket. In this event, 

1 ~, d~'lexp( ~ (H(k) oo fl < -~ and - fl(log G(r)) - 1)) < 
r = l  k = l  

suffices to give a family o ~ made up almost entirely of ./Co-sets. 
We consider two ways of defining the pair of functions G and H. First, let 

n(k )  = 2, G(k) = k. Then 

(logG(r)) ~ ( H ( k ) -  1) = r logr ;  
k = l  

and if d , = e x p ( - f l ' r l o g r )  and f l ' < f l <  1/2, then (3-20) is satisfied. Every 
set in the resulting family ~ is a symmetric set. For each k and each 
a > O, J(k)d~ = 2ke -~a'~l~ which tends to zero as k ~ oo. We have established 

the following result of Salem ([-5],p. 100): 

COROLLARY C-1. I f  fl < 1/2, there exists a symmetric set whose Lebesgue 

measure is a pseudofunction, and such that 

(i) ~, d T ~ e x p ( - f l r l o g r ) <  oo; 
r = l  

(ii) the set has Hausdorff  dimension zero, that is, it has zero h~-measure 
for  every ~ > O, where h~(t) = t ~. 

This corollary gives a set satisfying (1-4) and thus complements Theorem A. 
The condition (i) cannot be much improved; for as Salem has shown ([8] or 
[5], p. 98), if lim,_.| 1/2 = 0, then the Lebesgue measure on the set is not 

a pseudofunction. 

Another alternative of interest is to take H ( k ) = e  k~, ~ < 1 ;  G ( k ) - 2 ;  
dk = exp( -- e~'). Then (3-20) is satisfied, giving 

COROLLARY C-2. There exists a translation set which is an ~r162 and has 

fb-measure zero for  all of the functions 

fb(t) = exp( -- (log t -  l)b), 0 < b < 1. 

Completion of proof. To check the Hausdorff measures, note that J(r) 
= ~(e "+1) and fb(d,) = exp( -- eb'~), SO that J(r)fb(d,) ~ 0 as r ~ o9. 
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